
Local Applications
Front end utility
Thu, Jan 10, 2008

A local application (LA) is a tool that has been used in many ways to particularize a front 
end. It is a separately compiled and downloaded C function invoked by the underlying 
system code, thus logically becoming an extension to the system code. This note describes 
some of the features supported by such applications in a wide variety of “Classic” front ends.

Update task
The system code in a front end includes support for many common features. About a 

dozen tasks comprise this support. Chief among these tasks is the Update task, which is run 
every 15 Hz cycle in synchronization with the accelerator clock system. (Some installations 
are designed to operate at 10 Hz.) Although the Update task performs many duties each 
cycle, it can briefly be considered to access local hardware to update the local data pool, call 
all active local applications, and fulfill all active data requests that are due on that cycle.

LA operation
As stated above, each local application (LA) is written as a C function. It expects two 

arguments and returns nothing. The first argument is a pointer to a 24-byte structure in the 
entry of the nonvolatile Local Application Table (LATBL) entry. This structure is:

Field Size Meaning
smPtr 4 Context static memory block allocated during initialization call
enable 2 Enable Bit# operated to enable/disable the LA
param[9] 18 Additional parameters defined for use by the LA

The second argument of an LA is the reason for the call. The numeric values are:

Code Reason
0 Initialization
1 Termination
2 (unused)
3 Cycle
4 Net
5 Serial

For most LAs, only reasons 0, 1, and 3 apply. The Net code is used for LAs that support a 
network protocol. The Serial code is used in special cases with serial port data.

The Initialization call is made when the Enable Bit transitions from”0” to “1”. The LA is 
expected to allocate a static memory block for its own ongoing use while it is enabled, placing 
its address in the smPtr field of the above 24-byte structure. For every other call type, it is 
thereby reminded of the location of this allocated memory block.

The Termination call is made when the Enable Bit transitions from “1” to “0”. The LA is 
expected to release any resources it has acquired during its operation, and to free its static 
memory block, placing a NULL in the smPtr field. Often, the Termination call is not actually 
used, as many LAs are enabled from the time a system is booted until forced to reboot again.

As long as the Enable Bit remains set to ”1”, the LA is called from the Update task with a 
Cycle call. The exact timing of this call depends upon where the “Call enabled LAs” entry 
(type 0x1D) is placed in the RDATA table whose entries guide the update of the local data pool, 



but it is usually placed near the end, when the data pool is already filled with fresh data 
values from the locally connected hardware. The order of the calls to LA instances depends 
upon the order of the corresponding entries in the LATBL.

LA Uses
An LA can serve many uses. Historically, the original use was to support a closed loop 

or to respond to a trip of some hardware connected to that front end. On each call, the LA 
may access certain data readings from the local data pool, perform a calculation, and possibly 
update additional data pool readings. Consider a simple recent example. The local 
application VACC is designed to sample from the local data pool a voltage reading digitized 
from an ion gauge controller, calculate the corresponding exponent range and mantissa, and 
deliver the floating point result in units of Torr. Each exponent value represents a 1 volt 
change in the raw reading, and the mantissa in the range 1–9 amounts to a voltage fraction. 
The ChanRaw function is called to get the local voltage reading from the data pool, and the 
SetFRead function is called to install the floating point result into the local data pool. This 
same process is performed for each Cycle call, but more complex cases of an LA may need to 
average across multiple Cycle calls, or to implement suitable state machine logic as needed. 
All such details are the business of the LA; the system code does not care about it. The one 
assumption made by the system is that the LA will not use too much execution time during 
any single call, since the system code expects to comfortably keep up with the 15 Hz Cycle 
rate. In actual cases, front ends often have dozens of enabled LAs that are invoked by the 
Update task on every cycle.

The static memory block can also be used to provide various diagnostics of interest to the 
programmer. These are commonly accessed via the usual Memory Dump page, but they can 
also be accessed via a suitable data request. Another mechanism is to have the LA write 
records of particular interest to a data stream. As an example of the latter, the LA AERS runs 
in each front end node to shepherd delivery of alarm messages to the Acnet alarm handler 
called AEOLUS. For every transaction made with AEOLUS, it writes a 16-byte record to the 
AERSLOG data stream. When questions arise about Acnet alarm messages, this data stream 
can be useful to help resolve them. Again, whatever diagnostics make sense for the given LA 
are of no concern to the system code.

It is possible to have multiple instances of a given LA, so that the same executable code is 
called more than once each cycle, each time with a different set of parameters. A recent 
example is PARC, which regulates the preaccelerator arc current by tweaking the arc supply 
voltage. Since both preaccelerators connect to a single front end, it is natural to use two LA 
instances of PARC, one for each preaccelerator. The I/O signals are indicated by a separate set 
of parameters, including different Enable Bits, and a separate static memory block.

Memory file system
Install a given LA into a front end by writing the code into its local nonvolatile 

memory file system. For the case of 68040-based nodes, the files contain executable code. For 
PowerPC-based nodes, the files contain object code of the form loadable by VxWorks. When 
a program is initially started up, in any case, an executable image is copied into dynamic 
memory for subsequent calls by the Update task. All instances of the LA call the same image.

Downloading into a node’s nonvolatile file system can be done in two ways. One is by using 
the TFTP protocol with the LA called TFTP, which serves as a TFTP protocol server, already 
installed in the node. This method is normally used to copy an initial or updated version of a 
file from a development node into a target front end. The other way is by using the Classic 
protocol to perform a sequence of settings to deliver the file to the target front end. (This is 

Local Applications p. 2



normally done via the Download page application, usually assigned to Page D in each front 
end.) One can even multicast an update to a given LA, so that all nodes addressed by the 
multicast address, and that currently have a previous version of the LA, can receive a new 
version of the file simultaneously. File versions are characterized by a version date, specified 
by Yr, Mo, Da, Hr, Mn. As the file is copied from one node to another, its version date is 
carried along. All LA file names have the form LOOPxxxx.

When a new version of a local application is downloaded to a node that already has that 
application enabled and running, the system automatically terminates the running code and 
initializes the new version. (In unusual cases for which this automatic switching logic is not 
appropriate, disable the old version first, so that the new version is loaded without being 
automatically enabled to execute.)

Page applications
A page application, as referenced above, is similar to a local application in that it is 

separately compiled and downloaded into the target node’s memory file system. But it is 
brought into execution by the Application task, not the Update task, and only a single page 
application can be active at one time, whereas there can be many enabled local applications. 
Each node has a screen image that is the display of the currently active page application. The 
black and white screen image is alphanumeric (upper case only) and organized as 16 lines of 
32 characters each. This design stems from that originally implemented in hardware driven 
by an inexpensive 6847 game chip circa 1980, with its video output driving a simple TV 
monitor. But even without the installed hardware, each front end supports page applications 
via what is locally termed Page G, named for the page to which it is normally attached on a 
front end’s page application index. Page G client support exists for several platforms. Page 
applications are attached via index page support to pages identified by page numbers in base 
32, denoted by 0–9, A–V. Page 0 is always the index page. Other pages can be assigned to 
page application files by name, where the file name is of the form PAGExxxx. As examples, 
PAGEPARM is the front end Parameter page application; PAGEDNLD is the above-mentioned 
Download page application. Each page application is a C function that has two parameters. 
The first is a pointer to a 120-byte page-private nonvolatile memory area, which is for use in 
maintaining information to be preserved across separate callups of that page. (It can also 
allocate a static memory block, keeping a pointer to same in this 120-byte area.) The second 
parameter is similar to that used by local applications, with the following call reasons:

Code Reason
0 Initialization
1 Termination
2 Keyboard interrupt (or Click)
3 Cycle

The term “Keyboard interrupt” is historic. It is a kind of “Do It” button, or nowadays, it 
corresponds to a mouse click. Its meaning normally depends upon the location of the cursor 
on the page display when the action is taken. The other three call reasons are the same as for 
local applications.

Access to LA params
When installing a local application instance, one normally uses the page application 

LAPP, which is normally assigned in a front end as Page E. One enters a node number and a 
LATBL entry number. The page display shows the list of the ten LA parameter values, 
including the Enable Bit number. Any can be modified via this user interface. A special test 
file is consulted to provide prompting text that identifies the meaning of each parameter, 

Local Applications p. 3



based upon the name of the LA assigned to that LATBL entry. The text file HELPLOOP is 
usually accessed from a library node when this page application is called up.

Data files
It is sometimes useful for an LA to read a data file that is separate from its own code. 

One use for this is to access a larger set of parameters than can be squeezed into 9 words. 
Within an LA, the code makes a local Classic request for the file contents. By convention, data 
files have names of the form DATAxxxx.

Utility programs
To assist in management of the nonvolatile files in various front ends, especially as 

compared with a “library” node that houses the latest versions of all files, use the page 
application VERS. Given a target node and a reference (library) node, it compares the files and 
lists any differences, marking which file is older/newer than the library version, or possibly 
not even contained within the library. It gets a copy of the CODES table (nonvolatile memory 
file directory) from each node and compares their contents.

Static memory access
To facilitate access to parts of the allocated static memory block for a given LA 

instance, there is a listype (96) that allows access to same. Its ident consists of a node number, 
a LATBL index and an offset. The index specifies the LA instance, and the offset reaches into 
the allocated static memory block in use by that LA instance. One can thus read or write it.

There is also a Data Access Table entry type (0x32) that can copy out words from a static 
memory block into the data pool. Again, an LATBL index is specified, along with an offset.

Obviously, one must take some care in accessing data in this way. If the structure definition 
of the static memory block changes, the offsets in use may no longer be valid. New fields 
should probably be added at the end.

There is a Print Memory utility page application (PMEM) that can print out parts of a static 
memory block for each instance of a specified LA. In place of the usual 8-digit memory 
address, enter a 4-character LA name appended by “+xxx”, where xxx is the offset to use, 
specified in hex. This PA can list out the same information from an entire family of nodes, 
where a data file named DATANxxx includes the array of node numbers to be targeted. For 
example, the data file DATANLIN contains all the Linac front end node numbers.

Summary
Use of local applications in front ends has allowed a single relatively stable system 

code to be used for many projects, with additions made via local applications to satisfy 
particular needs of the project. Once a local application is installed, it acts as a permanent 
extension of the system code, being automatically initialized every time that front end boots.

Local Applications p. 4


